Tuesday, April 26, 2011

Corbett Report on Fukushima & Chernobyl

Scroll down for video



James Corbett of the Corbett Report is a Canadian teaching English in Japan. I respect his approach to independently reporting world news from a perspective of researching the facts and being prepared. In the below video he brings he shows the advantages of being an Ex-Patriot being able to bail on a host country if something like the Fukushima happens with its radioactive and economic fallout.

Because of what happened to this blogger, I've thought about becoming a US Expat.

Mr. Corbett, in one of his podcasts, took great offense to those who blindly said, HAARP was used to cause the Japanese Earthquake. So, if Mr. Corbett viewed my blog post, "Stan the Globalist says Ha Ha Japan", from his standpoint and news reporting, took offense to such "news reporting", I'm sorry. It wasn't reporting at all, it was blogging on how evil human nature can be. I was more suggesting that evil, with tools, may use them, not that the globalist corporate banksters necessarily used HAARP to cause the Japanese, Chile, and Haitian earthquakes. So, if James Corbett of The Corbett Report viewed [this blog post], and took offense, I would offer my deepest apologies.

The extent of the radiation dangers in Japan are really still unknown. The future is up for debate. Mr. Corbett covers those issues in a concise, to the point, educated stance. Enjoy the video below.

stevengerickson AT Yahoo Dot Com



Both above images were found in [this thread]

Fukushima and Chernobyl: The Art of the Cover-up


Text with video:

Uploaded by on Apr 26, 2011

The Fukushima and Chernobyl nuclear disasters are quite different from a technological point of view as there are considerable differences between the causes of the catastrophes in each case and, furthermore, the equipment at the two devastated nuclear power plants is different, says independent journalist James Corbett who is in Osaka right now.

What also divides the cases is that in the Soviet Union, after it became evident that information about the catastrophe in Chernobyl could not be hidden under a rug, the information about the liquidation of the aftermath of the disaster was absolutely open to the international community. The situation in Fukushima is the opposite: the Japanese authorities censor the information about what exactly is going on at the devastated nuclear facility and share it with only a limited number of organizations.

"The [Japanese] government has proven that it is not interested in giving free and open access to the [Fukushima] site or the information coming out of there," he said, adding that briefings on the situation "are only open to a selected group of Japanese media organizations -- and foreign media and independent journalists are being excluded from those meetings."

http://rt.com/news/no-end-fukushima-tragedy/

More video, scroll down to bottom of post

* * * *
* * * *


The below found

http://en.wikipedia.org/wiki/High_Frequency_Active_Auroral_Research_Program



High Frequency Active Auroral Research Program

The High Frequency Active Auroral Research Program (HAARP) is an ionospheric research program jointly funded by the US Air Force, the US Navy, the University of Alaska and the Defense Advanced Research Projects Agency (DARPA).[1] Its purpose is to analyze the ionosphere and investigate the potential for developing ionospheric enhancement technology for radio communications and surveillance purposes.[2] The HAARP program operates a major Arctic facility, known as the HAARP Research Station, on an Air Force owned site near Gakona, Alaska.

The most prominent instrument at the HAARP Station is the Ionospheric Research Instrument (IRI), a high power radio frequency transmitter facility operating in the high frequency (HF) band. The IRI is used to temporarily excite a limited area of the ionosphere. Other instruments, such as a VHF and a UHF radar, a fluxgate magnetometer, a digisonde and an induction magnetometer, are used to study the physical processes that occur in the excited region.

Work on the HAARP Station began in 1993. The current working IRI was completed in 2007, and its prime contractor was BAE Advanced Technologies.[1]

As of 2008, HAARP had incurred around $250 million in tax-funded construction and operating costs. HAARP has also been blamed by conspiracy theorists for a range of events, including numerous natural disasters.

Objectives


The HAARP project aims to direct a 3.6 MW signal, in the 2.8–10 MHz region of the HF [High Frequency] band, into the ionosphere. The signal may be pulsed or continuous. Then, effects of the transmission and any recovery period can be examined using associated instrumentation, including VHF and UHF radars, HF receivers, and optical cameras. According to the HAARP team, this will advance the study of basic natural processes that occur in the ionosphere under the natural but much stronger influence of solar interaction, as well as how the natural ionosphere affects radio signals.

This will enable scientists to develop techniques to mitigate these effects in order to improve the reliability and/or performance of communication and navigation systems, which would have a wide range of applications in both the civilian and military sectors, such as an increased accuracy of GPS navigation, and advancements in underwater and underground research and applications. This may lead to improved methods for submarine communication and the ability to remotely sense the mineral content of the terrestrial subsurface, among other things. One application would be to map out the underground complexes of countries. The current facility lacks the range to reach these countries, but the research could be used to develop a mobile platform.[3]

The HAARP program began in 1990. The project is funded by the Office of Naval Research and jointly managed by the ONR and Air Force Research Laboratory, with the principal involvement of the University of Alaska. Many other universities and educational institutions have been involved in the development of the project and its instruments, namely the University of Alaska (Fairbanks), Stanford University, Penn State University (ARL), Boston College, UCLA, Clemson University, Dartmouth College, Cornell University, Johns Hopkins University, University of Maryland, College Park, University of Massachusetts, MIT, Polytechnic Institute of New York University, and the University of Tulsa. The project's specifications were developed by the universities, which are continuing to play a major role in the design of future research efforts.

According to HAARP's management, the project strives for openness and all activities are logged and publicly available. Scientists without security clearances, even foreign nationals, are routinely allowed on site. The HAARP facility regularly (once a year on most years according to the HAARP home page) hosts open houses, during which time any civilian may tour the entire facility. In addition, scientific results obtained with HAARP are routinely published in major research journals (such as Geophysical Research Letters, or Journal of Geophysical Research), written both by university scientists (American and foreign) or by US Department of Defense research lab scientists. Each summer, the HAARP holds a summer-school for visiting students, including foreign nationals, giving them an opportunity to do research with one of the world's foremost research instruments.

Research


HAARP's main goal is basic science research of the uppermost portion of the atmosphere, known as the ionosphere. Essentially a transition between the atmosphere and the magnetosphere, the ionosphere is where the atmosphere is thin enough that the sun's x-rays and UV rays can reach it, but thick enough that there are still enough molecules present to absorb those rays. Consequently, the ionosphere consists of a rapid increase in density of free electrons, beginning at ~70 km, reaching a peak at ~300 km, and then falling off again as the atmosphere disappears entirely by ~1000 km. Various aspects of HAARP can study all of the main layers of the ionosphere.

The profile of the ionosphere is highly variable, showing minute-to-minute changes, daily changes, seasonal changes, and year-to-year changes. This profile becomes particularly complicated near the Earth's magnetic poles, where the nearly vertical alignment and intensity of the Earth's magnetic field can cause physical effects like aurorae.

The ionosphere is traditionally very difficult to measure. Balloons cannot reach it because the air is too thin, but satellites cannot orbit there because the air is still too thick. Hence, most experiments on the ionosphere give only small pieces of information. HAARP approaches the study of the ionosphere by following in the footsteps of an ionospheric heater called EISCAT near Tromsø, Norway. There, scientists pioneered exploration of the ionosphere by perturbing it with radio waves in the 2–10 MHz range, and studying how the ionosphere reacts. HAARP performs the same functions but with more power, and a more flexible and agile HF beam.

Some of the main scientific findings from HAARP include:

  1. Generation of very low frequency radio waves by modulated heating of the auroral electrojet, useful because generating VLF waves ordinarily requires gigantic antennas
  2. Production of weak luminous glow (below what can be seen with the naked eye, but measurable) from absorption of HAARP's signal
  3. Production of extremely low frequency waves in the 0.1 Hz range. These are next to impossible to produce any other way, because the length of a transmit antenna is dictated by the wavelength of the signal it is designed to produce.
  4. Generation of whistler-mode VLF signals which enter the magnetosphere, and propagate to the other hemisphere, interacting with Van Allen radiation belt particles along the way
  5. VLF remote sensing of the heated ionosphere

Research at the HAARP includes:

  1. Ionospheric super heating
  2. Plasma line observations
  3. Stimulated electron emission observations
  4. Gyro frequency heating research
  5. Spread F observations
  6. High velocity trace runs
  7. Airglow observations
  8. Heating induced scintillation observations
  9. VLF and ELF generation observations [4]
  10. Radio observations of meteors
  11. Polar mesospheric summer echoes: PMSE have been studied using the IRI as a powerful radar, as well as with the 28 MHz radar, and the two VHF radars at 49 MHz and 139 MHz. The presence of multiple radars spanning both HF and VHF bands allows scientists to make comparative measurements that may someday lead to an understanding of the processes that form these elusive phenomena.
  12. Research on extraterrestrial HF radar echos: the Lunar Echo experiment (2008).[5][6]
  13. Testing of Spread Spectrum Transmitters (2009)
  14. Meteor shower impacts on the ionosphere
  15. Response and recovery of the ionosphere from solar flares and geomagnetic storms
  16. The effect of ionospheric disturbances on GPS satellite signal quality


Instrumentation and operation


The main instrument at HAARP Station is the Ionospheric Research Instrument (IRI). This is a high power, high-frequency phased array radio transmitter with a set of 180 antennas, disposed in an array of 12x15 units that occupy a rectangle of about 33 acres (13 hectares). The IRI is used to temporarily energize a small portion of the ionosphere. The study of these disturbed volumes yields important information for understanding natural ionospheric processes.

During active ionospheric research, the signal generated by the transmitter system is delivered to the antenna array and transmitted in an upward direction. At an altitude between 70 km (43 mi) to 350 km (217 mi) (depending on operating frequency), the signal is partially absorbed in a small volume several tens of kilometers in diameter and a few meters thick over the IRI. The intensity of the HF signal in the ionosphere is less than 3 µW/cm², tens of thousands of times less than the Sun's natural electromagnetic radiation reaching the earth and hundreds of times less than even the normal random variations in intensity of the Sun's natural ultraviolet (UV) energy which creates the ionosphere. The small effects that are produced, however, can be observed with the sensitive scientific instruments installed at the HAARP Station, and these observations can provide information about the dynamics of plasmas and insight into the processes of solar-terrestrial interactions.[7]

Each antenna element consists of a crossed dipole that can be polarized for linear, ordinary mode (O-mode), or extraordinary mode (X-mode) transmission and reception.[8][9] Each part of the two section crossed dipoles are individually fed from a custom built transmitter, that has been specially designed with very low distortion. The Effective Radiated Power (ERP) of the IRI is limited by more than a factor of 10 at its lower operating frequencies. Much of this is due to higher antenna losses and a less efficient antenna pattern.

The IRI can transmit between 2.7 and 10 MHz, a frequency range that lies above the AM radio broadcast band and well below Citizens' Band frequency allocations. The HAARP Station is licensed to transmit only in certain segments of this frequency range, however. When the IRI is transmitting, the bandwidth of the transmitted signal is 100 kHz or less. The IRI can transmit in continuous waves (CW) or in pulses as short as 10 microseconds (µs). CW transmission is generally used for ionospheric modification, while transmission in short pulses frequently repeated is used as a radar system. Researchers can run experiments that use both modes of transmission, first modifying the ionosphere for a predetermined amount of time, then measuring the decay of modification effects with pulsed transmissions.

There are other geophysical instruments for research at the Station. Some of them are:

  • A fluxgate magnetometer built by the University of Alaska Fairbanks Geophysical Institute, available to chart variations in the Earth's magnetic field. Rapid and sharp changes of it may indicate a geomagnetic storm.
  • A digisonde that provides ionospheric profiles, allowing scientists to choose appropriate frequencies for IRI operation. The HAARP makes current and historic digisonde information available online.
  • An induction magnetometer, provided by the University of Tokyo, that measures the changing geomagnetic field in the Ultra Low Frequency (ULF) range of 0–5 Hz.


Site


The project site (62°23′30″N 145°09′03″W / 62.39167°N 145.15083°W / 62.39167; -145.15083) is north of Gakona, Alaska just west of Wrangell-Saint Elias National Park. An environmental impact statement led to permission for an array of up to 180 antennas to be erected.[10] The HAARP has been constructed at the previous site of an over-the-horizon radar (OTH) installation. A large structure, built to house the OTH now houses the HAARP control room, kitchen, and offices. Several other small structures house various instruments.

The HAARP site has been constructed in three distinct phases: [11]

  1. The Developmental Prototype (DP) had 18 antenna elements, organized in three columns by six rows. It was fed with a total of 360 kilowatts (kW) combined transmitter output power. The DP transmitted just enough power for the most basic of ionospheric testing.
  2. The Filled Developmental Prototype (FDP) had 48 antenna units arrayed in six columns by eight rows, with 960 kW of transmitter power. It was fairly comparable to other ionospheric heating facilities. This was used for a number of successful scientific experiments and ionospheric exploration campaigns over the years.
  3. The Final IRI (FIRI) is the final build of the IRI. It has 180 antenna units, organized in 15 columns by 12 rows, yielding a theoretical maximum gain of 31 dB. A total of 3.6 MW of transmitter power will feed it, but the power is focused in the upward direction by the geometry of the large phased array of antennas which allow the antennas to work together in controlling the direction. As of March 2007, all the antennas were in place, the final phase was completed and the antenna array was undergoing testing aimed at fine-tuning its performance to comply with safety requirements required by regulatory agencies. The facility officially began full operations in its final 3.6 MW transmitter power completed status in the summer of 2007, yielding an effective radiated power (ERP) of 5.1 Gigawatts or 97.1 dBW at maximum output. However, the site typically operates at a fraction of that value due to the lower antenna gain exhibited at standard operational frequencies.[12]


Related facilities

In America, there are two related ionospheric heating facilities: the HIPAS, near Fairbanks, Alaska, and (currently offline for reconstruction) one at the Arecibo Observatory Link text in Puerto Rico. The European Incoherent Scatter Scientific Association (EISCAT) operates an ionospheric heating facility, capable of transmitting over 1 GW effective radiated power (ERP), near Tromsø, Norway.[13] Russia has the Sura Ionospheric Heating Facility, in Vasilsursk near Nizhniy Novgorod, capable of transmitting 190 MW ERP.

Conspiracy theories


HAARP is the subject of numerous conspiracy theories, with individuals ascribing various hidden motives and capabilities to the project. Journalist Sharon Weinberger called HAARP "the Moby Dick of conspiracy theories" and said the popularity of conspiracy theories often overshadows the benefits HAARP may provide to the scientific community.[14][15]

The alleged dangers of HAARP were dramatized in popular culture by Marvel Comics, author Tom Clancy, and The X-Files. A Russian military journal wrote that ionospheric testing would "trigger a cascade of electrons that could flip Earth's magnetic poles." The European Parliament and the Alaska state legislature held hearings about HAARP, the former citing "environmental concerns." Author of the self-published Angels Don't Play This HAARP, Nick Begich has told lecture audiences that HAARP could trigger earthquakes and turn the upper atmosphere into a giant lens so that "the sky would literally appear to burn." [16] [17]

Skeptic computer scientist David Naiditch called HAARP "a magnet for conspiracy theorists", saying the project has been blamed for triggering catastrophes such as floods, droughts, hurricanes, thunderstorms, and devastating earthquakes in Pakistan and the Philippines aimed to shake up "terrorists." Naiditch says HAARP has been blamed for diverse events including major power outages, the downing of TWA Flight 800, Gulf War syndrome, and chronic fatigue syndrome. Conspiracy theorists have also suggested links between HAARP and the work of Nikola Tesla (particularly potential combinations of HAARP energy with Tesla's work on pneumatic small-scale earthquake generation) and physicist Bernard Eastlund. According to Naiditch, HAARP is an attractive target for conspiracy theorists because "its purpose seems deeply mysterious to the scientifically uninformed".[18] Conspiracy theorists have linked HAARP to numerous earthquakes. An opinion piece on a Venezuelan state-run television channel's website named HAARP as a cause of the 2010 Haiti earthquake.[19][20][21]

Conspiracy Theory with Jesse Ventura.



* * * *

Chernobyl, Fukishima, The James Corbett Report, and the Truth about Acceptable Radiation


Text with video:

Uploaded by on Apr 6, 2011

More info and links: http://starkravingviking.blogspot.com/2011/04/chernobyl-fukishima-james-corbe...

This is audio of the James Corbett Podcast #180, the intro to this video was snipped for this video upload and is embedded in above link.

Text with podcast # 180:
Fukushima is not Chernobyl. The plants have different designs, were effected in different ways and are behaving differently. Nevertheless, there are still things that we can learn about the Chernobyl disaster that might teach us about our current situation. Join us this week as we uncover some of the secrets of Chernobyl and ask what this can tell us about Fukushima.
-The Corbett Report

http://www.corbettreport.com/

Corbett Report on YouTube:
http://www.youtube.com/user/corbettreport



What Caused 3/11 Earthquake


Text with video:

Uploaded by on Mar 27, 2011

This is the audio for the James Corbett Report Podcast # 179. More info:
http://www.corbettreport.com/episode-179-what-caused-the-311-earthquake/

Japan is just tallying up the damage from the devestating earthquake that struck off the northeast coast on March 11th, but it is clear that this was one of the most powerful earthquakes in modern Japanese history. Now, some are asking whether this was a natural earthquake or if it was precipitated by human activities. Join us this week as we go in search of a man-made fingerprint on the 3/11 earthquake.

HAARP, conspiracy theories and more.

This video is embedded with other Corbett Report videos here:
http://www.opednews.com/Diary/The-James-Corbett-Report-a-by-Steven-G-Erickson...

0 Comments:

Post a Comment

Links to this post:

Create a Link

<< Home


View My Stats